Table of Contents

C and C++

C declerations

A c decleration can be read by following this rule and knowing about precedence.

Go left when you can and right when you must.

char *(*(**foo [][8])())[];

foo is an array to an array of 8 pointers to poiners to a function that returns a pointer to an array of pointers to char

C++ Interview questions

I was given a pop quiz by a non-tech interviewer once on c++. Here was his questions:

  1. What is the name of an invalid pointer?
    1. Weird question and I don't think it's right. Answer he was looking for was null.
  2. What is the difference between a struct and a class?
  3. What is the keyword to deallocate memory? Lol
  4. When using a new keyword where is the memory stored, stack or heap? Heap OBVI.
  5. If a program crashes and you have a core dump and debugger, what is the first thing you do?
    1. Look at a backtrace, see where the program crashed, look at what the variable were.

General C++

Principles of C++: 1)

Differences Between C and C++

Here are some differences I have come across between C and C++. This stuff is interesting because it highlights the features that make C++ more powerful, and also gives you a better understanding of the way the two languages work.

C Preprocessor (CPP)

Much of what I have learned comes from two places: the GNU CPP manual link and a guide to the CPP link.

__VA_ARGS__ is a CPP (c pre processor) identifier that gets replaced with the values of … when used in a variadic macro.

A simple macro is a kind of abbreviation. It is a name which stands for a fragment of code. Some people refer to these as manifest constants.

Before you can use a macro, you must define it explicitly with the #define directive. #define is followed by the name of the macro and then the code it should be an abbreviation for. For example,

#define BUFFER_SIZE 1020

The use of all upper case for macro names is a standard convention. Programs are easier to read when it is possible to tell at a glance which names are macros.

The C preprocessor scans your program sequentially, so macro definitions take effect at the place you write them.

foo = X;
#define X 4
bar = X;

Produces as output:

foo = X;
bar = 4;

You can also use #defines to define functions.

The do { } while(0) technique in macro definitions is used to avoid issues with generating double expressions caused by the addition of a semicolon. Doing the following:

#define SOME_MACRO(VAR) \
do {    int i = var;    \
        i = 12*i; }     \
        while (0) 

When you call this macro in the your code as SOME_MACRO(var); it expands into one statement which is:

do { ... } while (0); 

This way you can use a macro expansion in a if else statement with no curly braces where more than one statement would mess stuff up.

C Declerations

First, understand the breakdown of a decleration in c.

Rule of Three

Rule of Five

STL containers

The STL library has 3 types of container classes:

STL containers provide a mechanism for traversing their contents called an iterator. An iterator is best visualized as a pointer to an element in the list with a set of overloaded operators that provide extra functionality.

Overloaded iterator operators:

Each container has functions that return an iterator.

Iterators are members of an STL container. For example to get an iterator for a specific type of list:

std::map<int, std::string>::const_iterator mapIt = myMap.cbegin(); 

Vector

An std::vector is a sequence container dynamic array that can grow to add to more elements.

Deque

An std::deque is double ended array that can grow from each end.

Pair

An std::pair is an object that holds a pair of objects.

// pair::pair example
#include <utility>      // std::pair, std::make_pair
#include <string>       // std::string
#include <iostream>     // std::cout
 
int main () {
  std::pair <std::string,double> product1;                     // default constructor
  std::pair <std::string,double> product2 ("tomatoes",2.30);   // value init
  std::pair <std::string,double> product3 (product2);          // copy constructor
 
  product1 = std::make_pair(std::string("lightbulbs"),0.99);   // using make_pair (move)
 
  product2.first = "shoes";                  // the type of first is string
  product2.second = 39.90;                   // the type of second is double
 
  std::cout << "The price of " << product1.first << " is $" << product1.second << '\n';
  std::cout << "The price of " << product2.first << " is $" << product2.second << '\n';
  std::cout << "The price of " << product3.first << " is $" << product3.second << '\n';
  return 0;
}

List

An std::list is a sequence container where each element contains a pointer to the next and previous element. You can't randomly access elements, you have to “walk the list”. But inserting elements is very fast if you know where to insert them.

Set

An std::set is an ordered list of unique elements that get automatically sorted as we insert them.

Multiset

An std::multiset is an ordered list of elements that can contain duplicate data which is automatically sorted as we insert them.

Map

An std::map is an associated array which is a map, symbol table or dictionary that has a collection of key value pairs such that a key only shows up once.

Data pairs must be inserted into a map, and while you do this they are automatically sorted. You can make pairs with the std::make_pair(x,y) helper function.

std::map<int, std::string> myMap;
myMap.insert(std::make_pair(1, "mango"));

Memory Leaks

For every new there must be a delete. Use the following valgrind command to profile for memory leaks link.

valgrind --tool=memcheck --leak-check=yes name_of_exec

Lambda Functions

Lambda functions are:

Lambda functions should be precise and self explaining.

The syntax is as follows:

Range-based for statement

C++ 11 introduced the range-based for statement 2) and takes the form:

for ( for-range-declaration : expression ) statement

Example:

int array[5] = { 1, 2, 3, 4, 5 };
for (int& x : array)
    x *= 2;

Debugging

There are lots of options for debugging. I make extensive use of DDD with ROS which helped a lot. gdbgui is an interesting web based front end, but i tried it for 5 mins and ran into issues with it debugging a simple program.

GDB

Debugging in GDB is not that bad! It is also really useful when looking at simple stuff for learning stuff.

This is a really nice intro link.

This is a really nice video on gdbtui (which is the text user input) mode link.

To debug in GDB you need to compile a program with a debug with a -g option.

For macros see the following link.

Mutable

mutable permits modification of the class member declared mutable even if the containing object is declared const.

int main()
{
    int n1 = 0;           // non-const object
    const int n2 = 0;     // const object
    int const n3 = 0;     // const object (same as n2)
    volatile int n4 = 0;  // volatile object
    const struct
    {
        int n1;
        mutable int n2;
    } x = {0, 0};      // const object with mutable member
 
    n1 = 1; // ok, modifiable object
//  n2 = 2; // error: non-modifiable object
    n4 = 3; // ok, treated as a side-effect
//  x.n1 = 4; // error: member of a const object is const
    x.n2 = 4; // ok, mutable member of a const object isn't const
 
    const int& r1 = n1; // reference to const bound to non-const object
//  r1 = 2; // error: attempt to modify through reference to const
    const_cast<int&>(r1) = 2; // ok, modifies non-const object n1
 
    const int& r2 = n2; // reference to const bound to const object
//  r2 = 2; // error: attempt to modify through reference to const
//  const_cast<int&>(r2) = 2; // undefined behavior: attempt to modify const object n2
}

Output:

# typical machine code produced on an x86_64 platform
# (only the code that contributes to observable side-effects is emitted)
main:
    movl    $0, -4(%rsp) # volatile int n4 = 0;
    movl    $3, -4(%rsp) # n4 = 3;
    xorl    %eax, %eax   # return 0 (implicit)
    ret

Pointer Syntax

sf::Sprite* re_sprite_hair, re_sprite_body, re_sprite_eyes;

Does not declare 3 pointers - it is one pointer and 2 objects.

sf::Sprite* unfortunately does not apply to all the variables declared following it, just the first. It is equivalent to
 
sf::Sprite* re_sprite_hair;
sf::Sprite re_sprite_body;
sf::Sprite re_sprite_eyes;

You want to do:

sf::Sprite *re_sprite_hair, *re_sprite_body, *re_sprite_eyes;

Smart Pointers

The STL library provides three types of “smart pointers”, std::unique_ptr, std::shared_ptr and std::weak_ptr.